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An induction linac uses pulsed power that is applied directly, without any intervening 

resonant cavities, to accelerate a charged particle pulse.  Relative to an rf linac this approach 
allows for a large beam pipe aperture capable of transporting a large current with long pulse 
duration.  The mean accelerating gradient is expected to be relatively low (less than about 1.5 
MV/m), but the potential efficiency of energy transfer is large.  A multiple-beam induction 
linac is therefore a natural candidate accelerator for a heavy ion fusion (HIF) driver.  
However, the accelerated beams must meet stringent requirements on occupied phase space 
volume in order to be focused accurately and with small radius onto the fusion target.  
Dynamical considerations in the beam injector and linac, as well as in final compression, 
final focus and the fusion chamber, determine the quality of the driver beams as they 
approach the target.  Requirements and tolerances derived from beam dynamics strongly 
influence the linac configuration and component design. 

After a brief summary of dynamical considerations, two major topics are addressed here: 
transportable current limits, which determine the choice of focal system for the linac; and 
longitudinal control of the beams, which are potential destabilized by their interaction with 
the pulsed power system. 
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1.1 Linear Induction Accelerators 
A multiple-beam induction linac (LIA) is a natural candidate for a Heavy Ion Fusion 

driver. This type of machine has features in common with other accelerators, such as 
requirements for high vacuum and alignment, however there are distinctive features arising 
from the induction method of acceleration. We begin with a brief discussion of this 
interesting technology as it relates to the dynamics of a charged particle beam. 

An induction linac uses a pulsed power circuit, where the pulser imposes an electric field 
directly on a charged particle beam at a gap in the beam transport structure. This is not a high 
Q cavity driven at resonance, as is the case for an rf linac. In simplified terms, charge stored 
in a capacitor is switched to produce a potential 

€ 

ΔV across the gap. A ferrite or highly 
laminated ferromagnetic induction core encircles the beam pipe near the gap and prevents a 
short to ground for a finite time 

€ 

Δt  given by Faraday’s law: 
 
    

€ 

ΔV = A ΔB Δt( )  ,                (1) 
 

where 

€ 

ΔB  and 

€ 

A  are the core’s average “flux swing” and longitudinal cross section area. For 
example

€ 

ΔB = 2.0T, A = .10m2 and ΔV = 200kV  gives 

€ 

Δt =1.0µs before the field collapses. 
Additional pulser components can shape the field in time, but in general it should be nearly 
constant while the beam is in the gap. 

An important feature of the LIA is its potential electrical efficiency. Energy from the 
capacitor goes into the beam and also heats the core. Ideally there is no energy reflected from 
the gap back into the pulser, i.e. there is an impedance match to beam current, which must be 
at least 1.0kA. In general energy is lost to the circuit, but special design could capture much 
of the reflected energy, resulting in electrical efficiency predicted to be as high as 40% (this 
has not yet been attempted). 

The beam’s return current necessarily flows through the pulser circuit and induces a 
reverse field in the acceleration gap. In addition to reducing 

€ 

ΔV  the beam’s interaction with 
the pulser results in growing waves moving forward in the linac but backwards in the ion 
beam. 
 
2.1 Beam Dynamics Overview 

Since resonant cavities are not required (or desired) for acceleration in a LIA, the beam 
pipe and gap can have a very large aperture compared with that of an rf linac. This important 
feature accommodates high beam current, which in turn leads to complicated dynamics in 
both the transverse (x, y) and longitudinal (z) directions. 

The main experience to date in design and operation of LIAs is with electron machines 
built primarily for defense-related purposes. Representative examples are ETA (5.0MeV, 
1.0kA), ATA (50MeV, 1.0-10.0kA), and DARHT (20MeV, 1.0kA). Heavy Ion LIAs, built 
for Heavy Ion Fusion and Warm Dense Matter experiments, have much lower kinetic energy: 
MBE-4 (.4MeV, 50mA/K+ beam) and the recently completed NDCX II (1.2MeV Li+). The 
low energies of the ion machines are a consequence of their long pulse duration at low 
energy. Light Ion Fusion experiments used pulse power applied to one or a few gaps to 



produce large radius converging beams of very high current (many kilo-amperes), but these 
machines hd little resemblance to the conceptual HIF LIAs which are of interest here. 

Although induction cores and pulsed power circuitry are very similar for electron and ion 
linacs, there are important differences in the beam dynamics. First, because electrons move at 
essentially the speed of light, they have no issues of longitudinal confinement or bunching 
instability. But a slow moving ion pulse must be prevented from expanding longitudinally 
(due to its space charge force), and a predicted bunching instability must be suppressed. The 
main dynamics issue for electron LIAs has been the Beam Breakup Instability (BBU), which 
is a growing hose-like motion of the beam driven by its interaction with the accelerating gap 
structure. Predictions of BBU for conceptual HIF drivers find that the growth rate is 
insignificant, due to the required strong focusing and large ion mass. Electron LIAs have 
used solenoids for transverse confinement, probably because of their relative simple 
construction and low fields (

€ 

B ≤1.0T  due to the small electron mass). HIF LIA concepts 
have usually adopted superconducting quadrupole magnets for transverse focusing because 
of their strength, good high velocity scaling and electrical efficiency. However, to date, 
electrostatic quadrupoles (MBE-4) and solenoids (NDCX II) have been selected for low cost 
and well-developed technology. 

A very significant and distinct feature of HIF LIAs is the transport of multiple beams 
(~100) in parallel. This appears to be possible with a multiple beam quadrupole structure, but 
it has not been shown that parallel solenoid channels can be arranged so that they do not 
interfere with each other through their magnet end fringe fields. 

Relatively speaking, electron beams are “hot” and ion beams are “cold”. This statement 
can be expressed quantitatively in terms of transverse and longitudinal emittance, which are a 
measure of occupied phase space area. The essential point for HIF dynamics is that, absent 
external focusing, an ion beam will expand from the force produced by its own space charge 
rather than transverse pressure. For electron beams this ordering of forces is reversed; an HIF 
beam (or “beamlet”) in a multi-beam structure must remain very, very cold in order to be 
focused to a small radius (

€ 

≈1.0mm) in the fusion chamber. Typically this implies that 
longitudinal momentum spread and angular spread are less than about 10-3 at the end of 
acceleration. The HIF beams emerge from their multi-beam injector at about 2.0MeV in a 
state of cold laminar flow. This condition must be maintained during acceleration despite the 
possibility of heating from magnet and pulser errors, electron clouds, instability, etc. 

The design of a large accelerator system, e.g. HIDIX, has a formal procedure of 
conceptual design, scientific design, detailed design, etc. Informally, one or more rough 
designs must precede the formal process and all dynamical issues must be resolved at an 
early stage. This end-to-end treatment of dynamics must include all significant processes and 
be sound. A community that develops components, performs experiments, and simulates 
must produce the end-to-end design model. This was done effectively for NDCX II (but after 
the original proposal). However, no such integrated design model exists for a LIA-based 
driver system. Such a tool, even in preliminary form, would help guide HIF research 
programs in the future. 

In the following section a brief discussion of the choice of focusing systems and 
longitudinal instability is presented. Below is a list of some dynamical considerations, 
 

Design of transport systems with multibeam interactions - halos? 
Vacuum in acceleration gaps - 10-8 torr good enough? 



Beam loss - activation, magnet operation, 

€ 

ecloud 
Steering - all beams separately? 
Alignment - all beams separately? 
Diagnostics - all beams separately? 
Longitudinal control - feed forward correction? 
Source reliability - for ~ 100 beams! 
Extra beams for reliability 
Special operations - beam bending, splitting, combining 
Electrical efficiency - special pulser circuits? 
Magnet aberrations - emittance growth 
Transverse/longitudinal coupling-stable? 
And more …… 

 
All goes into an integrated end-to-end dynamical model. 
 

3.1 Transverse Focusing 
Three main types of externally imposed focusing elements are considered for an HIF 

LIA: solenoids, magnetic quadrupoles, and electrostatic quadrupoles. Other types of focusing 
(and defocusing) exist and are even inevitable, but they should be minimized by design in an 
HIF driver to maintain cold laminar flow of the beamlets. These include: electron clouds, 
higher order magnetic and electrostatic multipoles, weak bend focusing, beam-beam 
interaction in gaps, reflection from pipe walls, image charge and current, magnet fringe 
fields, screens and wires inside the beam, and more. Acceleration gaps produce a small net 
focal force that also needs to be included in a dynamical model, but it is only really important 
in injectors. 

A simple model equation for the transverse (x) motion of an ion is: 
 
     
               (2) 
 

where 

€ 

ω 0 is the effective focal frequency from the quadrupoles or solenoids and (Ex, By) are 
self-generated fields of the beam. Eqn. (2) may be further approximated by  
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where 

€ 

ρ  is the mean space charge density of the beam and the factor of 

€ 

1 γ 2  is from partial 
cancellation by the beam’s magnetic field. Since for a cold beam we must have a near 
cancellation on the rhs of eqn. (3), an approximate expression for transportable charge 
density is 
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Large

€ 

ρ  is a good figure of merit for a focal system, but there are additional considerations. A 
first point is that the phase advance per focal period (length P) is limited by a stability 
condition: 
 
      

€ 

ω 0 ρ υ ≤120         (5) 
 
for quadrupole transport to avoid growing pulsations of the beam’s radius. In practice 80  

€ 

  
has been shown in simulations to be a safe limit that avoids emittance growth and particle 
halos. A similar condition applies to solenoids. Second, line charge density 

€ 

λ = πa2ρ  for 
beam radius a, is also an important figure of merit because the number of parallel beams is 
usually limited, say 

€ 

Ν ≈100 are needed for symmetrical deposition on the target. But for 
given 

€ 

ρ , the beam radius is limited by the possible field strength of the focal elements, say 

€ 

B ≤10T  in superconducting wire and 

€ 

E ≤ 5MV m  on electrodes. Electrostatic elements are 
also constrained by the potential on electrical feedthroughs, 100kV being an approximate 
practical limit. 

A solenoid transport limit is easily estimated by noting that in a frame rotating at half the 
cyclotron frequency, i.e. the Larmor frequency 
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Here 

€ 

B2 should be replaced by its average value – a significant reduction. 
Eqn. (8) makes solenoid focusing look pretty good for large radius beams because B does 

not need to increase with a. For a single heavy ion beam of moderate energy (less than about 
100MeV) it may be optimal, but as mentioned, there may be a problem for multiple beams. 

Magnetic quadrupole transport applies strong transverse fields that alternate in sign: 
 
      

€ 

 
B = ± ʹ′ B x ˆ e y + yˆ e x( ) .      (9) 

 
A single quadrupole of transverse gradient 

€ 

ʹ′ B  focuses in one direction (e.g. 

€ 

ˆ e x) and defocuses 
in the other (e.g. 

€ 

ˆ e y). By alternating the polarity along the transport lattice a net focus is 
produced for both directions: 
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Assuming 50% field occupancy and   

€ 

ω 0 p υ < 80 . The transportable charge density is 
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ρ ≈
ε 0
48

Zeγ
M

Ρ2 ʹ′ B 2( ),                (11) 

 
which looks similar to the solenoid limit, but with the crucial difference that P can become 
large as ion velocity increases. Field in superconducting NbTi wire may reach about 6.0T. 
With wire at twice the beam radius we get a technological limit on the product 

€ 

ʹ′ B a: 
 
    

€ 

2 ʹ′ B a ≈ Bwire ≤ 6.0T .                (12) 
 
This allows magnets to occupy a relatively small fraction of the LIA at high energy. Beam 
transport channels in an array can share magnet poles, with an efficient occupancy of 
transverse space, making this an attractive LIA component. However, there has been no 
prototype development of such multi-beam magnets to date. 

Transport by electrostatic quadrupoles seems similar to transport by magnetic 
quadrupoles. Just substitute 

€ 

ʹ′ B → ʹ′ E υ  in the above formulas. Then 
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again with 50% field occupancy. The new factor of 

€ 

1 υ 2  shows that this technology is most 
effective at low kinetic energy. But when the limit on electrode potential is applied, along 
with the stability condition, the limit on line charge density is found to be  
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independent of Z and M. Such a low value of 

€ 

λ , but with high

€ 

ρ , has suggested ingenious 
driver configurations using thousands of parallel beams. Another possibility is to use 
electrostatic quadrupoles at low energy with perhaps 400 parallel beams, and make a four-to-
one combining operation followed by magnetic quadrupoles at about 50MeV. 
 
4.1 Longitudinal Stability 

Unlike transverse confinement, a model for longitudinal dynamics of high current, 
multiple beams is not yet well developed. The main difficulty is complexity; all the beams 
interact with each other, both directly and via their net return current through the pulser. 
Also, a general model of the circuitry that includes cores and gap geometry, which is valid 
over a wide range if perturbation frequencies, is not yet available.  

A rough 1-d model of longitudinal dynamics is given here and displays some essential 
features. Let I denote the total current of the entire set of N beams,

€ 

λ  their entire line change 
density, and 

€ 

υ  their velocity. These variables are functions of time (t) and distance (z). The 
beams are accelerated by the net electric field E, which is also a function of t and z, and is 



considered to be an average over several gaps and focal sections. We then have three coupled 
equations for the smooth variables: 
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I = λυ,                 (15) 
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Here 

€ 

Ε0 is the pulser-generated field (in the absence of a beam), and 

€ 

ΕI  is the field 
induced by the return current (-I). The direct space charge force appears proportional to 

€ 

∂λ
∂z , with a multiplicative factor (g) determined from the transport and gap geometry. The 

electric field 

€ 

ΕI  induced by the beam is approximated using a circuit equation with parallel 
resistance, inductance, and capacitance. Here R, L, and 1/C are smoothed values, so R has 
units Ohm/m, etc: 
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−I =
EI

R
+ C ∂EI

∂t
+
1
L

EI ʹ′ t ( )
t
∫  .                     (18) 

 
A natural equilibrium is found with the net field on the rhs of eqn. (17) being is just the 

desired acceleration field. However, perturbations of the beam current can exhibit unstable 
growth. The inductive term clearly amplifies bunching while the capacitance opposes 
inductance and is stabilizing to an incomplete degree. The space charge term acts to 
propogate waves along the beam, analogous to sound, both forwards and backwards, while 
the resistance can cause these waves to grow in the backwards direction. A resistance without 
any other forces causes growth of bunches at unphysical rates. 

The above analysis assumes the applicability of a very simple field model. At low 
frequencies (on the order of an inverse pulse duration) the circuit parameters are closely 
related to pulser and core properties and therefore the electrical efficiency. However, high 
frequencies may require different L, R, C or a different circuit model. Unstable growth 
distances of about 100m have previously been estimated. A feed-forward correction system 
may be effective in controlling these low frequency perturbations. Another method of 
stabilization is by momentum spread, which damps at sufficiently short wave length. Earlier 
estimates of required spread concluded 

€ 

ΔP P ≈10−2  was sufficient for complete stability 
with representative systems parameters, but this is clearly too much spread for final focus 
(after final compression amplifies it to 

€ 

ΔP P ≈ .1 or higher). Other aspects of instability 
requiring renewed study are multi-beam effects and high order cavity modes. 
 


